Flavonoids from Tephrosia major. A New Prenyl-β-hydroxychalcone^a

Federico Gómez-Garibay, Oswaldo Téllez-Valdez, Gregorio Moreno-Torres and José S. Calderón*

Instituto de Química de la Universidad Nacional Autónoma de México Circuito Exterior, Ciudad Universitaria, Coyoacán, 04510 México, D. F. Fax: (52) (55) 56162203. E-mail: uscalder@correo.unam.mx

- * Author for correspondence and reprint requests
- Z. Naturforsch. 57c, 579-583 (2002); received April 3, 2002

Tephrosia major, Leguminosae, Prenylated-β-hydroxychalcone

The roots and aerial parts of *Tephrosia major* Micheli, afforded a new prenylated- β -hydroxychalcone, characterized as 2',6'-dihydroxy-3'-prenyl-4'-methoxy- β -hydroxychalcone. In addition, seven prenylated flavonoids, two rotenoids, β -sitosterol, stigmasterol, lupeol and quercetin were isolated. The structure of the new β -hydroxy chalcone was established by spectroscopic methods, including 2D NMR experiments.

Introduction

β-Hydroxychalcones (dibenzoylmethanes) belong a rare group of flavonoids, which do not commonly occur in nature, to our knowledge only seven prenylated β-hydroxychalcones have been isolated. They present simple structures and usually are found as diketo-ketoenolic tautomeric mixtures (Ayabe et al., 1980, 1986; Demizu et al., 1992; Mayer, 1993; Rathore et al., 1987; Venkataratnam et al., 1987; Waterman and Mahmoud, 1985) or less commonly as a keto-enolic tautomer possessing a Z-configuration (Camele et al., 1980; Gandhidasan et al., 1987; Parmar et al 1989). Recently Stevens et al., (1999) reported that 2-hydroxyflavanones exist together with dibenzoylmethanes as tautomeric pairs in solvents such as DMSO and Me₂CO. Previous phytochemical studies of the genus Tephrosia (Leguminosae; subfamily Papilinoideae; tribe *Tephrosieae*) have led to the isolation and identification of numerous flavonoids, rotenoids and coumestan derivatives, some of which possess insecticidal and piscicidal properties (Gomez-Garibay et al., 2001). In continuation of our phytochemical studies of members of the genus Tephrosia we have studied Tephrosia major, a species endemic in northwest Mexico.

Results and Discussion

Extraction of the roots and aerial parts of the plant with petrol, ethyl acetate and methanol, followed in each case by CC and prep. TLC over silica-gel (see Experimental) gave a new flavonoid, 2',6'-dihydroxy-3'-prenyl-4'-methoxy-β-hydroxychalcone (1c). In addition the known, β-sitosterol, stigmasterol, lupeol, the flavonoids, glabranin (Gómez-Garibay et al., 1988) 7-O-methyl-glabranin (Gómez-Garibay et al., 1988), tephrowatsin A (Gómez-Garibay et al., 1985), quercetol B (Gómez-Garibay et al., 1988), obovatin (Chen et al., 1978), tephrobbotin (Gómez-Garibay et al., 1986), tephrowatsin B (Gómez-Garibay et al., 1985), quercetin, the rotenoids, sumatrol, α -toxicarol were isolated. Identification of the known compounds was based on the comparison of their spectroscopic (1H, 13C, and EIMS) and physical (m.p.) data reported in the literature.

Compound **1c** was obtained as yellow crystals, m.p. $121-123^{\circ}$. Its molecular formula $C_{21}H_{22}O_5$ was deduced from the EIMS spectrum (M⁺, m/z 354) and by quantification of the number of methyl, methylene, methine and quaternary carbon atoms revealed in the ¹³C NMR and DEPT spectra (Table I). The IR spectrum of **1c** displayed bands at 1675 and 1604 cm⁻¹ characteristic of an enolic β -diketone moiety (Ayabe *et al.*, 1980). The ¹H NMR spectrum of **1c** showed signals for two olefinic methyl groups at δ 1.56 (3H, brs) and 1.61 (3H, brs), one allylic methylene at δ 3.23 (2H, d, J = 6.6 Hz) and one olefinic proton at δ 5.10 (1H,

^a Part 11 in the series Flavonoids from Tephrosia species. For part 10 see Gomez-Garibay et al., 2001. Contribution No. 1748 of Instituto de Ouímica, UNAM.

Fig. 1. Chemical structures of 2',6'-dihydroxy-4'-methoxy-3'-prenyl- β -hydroxychalcone (**1c**), pongamol (**2**) and 2'-methoxy-3',4'-(2,2-dimethylchromene)- β -hydroxychalcone (**3**).

brt, J = 6.6 Hz) suggested the presence of a C-3-methyl, 2-butenyl (C-prenyl) moiety (Gómez-Garibay et al., 1997) which was confirmed by resonances in the ¹³C NMR spectrum of **1c** at δ 17.9 (q), 25.6 (q), 131.3 (s) 121.6 (d) and 22.3 (t), corresponding to C-11', C-10', C-9', C-8' and C-7', respectively (Waterman and Mahmoud 1985). The ¹H NMR spectrum of **1c** also showed a three proton sharp signal at δ 3.97 (s), and one proton signal at δ 6.41 (s) assigned to an aromatic methoxyl group and, an uncoupled A ring aromatic proton, respectively. Further signals at down field (δ 10.3) and 12.5) for two phenolic protons were observed, which disappeared after D₂O exchange. All the above spectroscopical data suggested a tetrasubstituted A-ring, bearing one prenyl, one methoxy and two hydroxy groups. Further signals were observed at δ 8.22 ((2H, dd, J = 7.2 and 1.2 Hz), 7.64 (1H, brt, J = 7.2 Hz) and 7.52 (2H, brd, J = 7.2 Hz)and agree with those reported for β-hydroxychalcones possessing an unsubstituted aromatic B ring (Mayer, 1993). Fragment ions at m/z 105 [C₇H₅O]⁺ and 77 $[C_6H_5]^+$ in the MS spectrum of **1c** confirmed the above assumption (Mayer, 1993; Parmar et al., 1989). The relative position of the methoxy group in the A ring was deduced from the MS spectrum of 1c. The absence of a fragment ion at m/z M+-31 [M+-MeO] characteristic of 2'-OMe hydroxychalcones (Khan and Zaman, 1974; Gupta and Krishnamurti, 1977) suggested that the methoxy group was located at C-4'. Thus, the two phenolic groups, had to be placed at C-2' and C-6', and the prenyl group at C-3'. Identical substitution pattern was found in praecansone B, demethylpraecansone B, and 2'-hydroxy-4',6'dimethoxy-3'-methyl-β-hydroxychalcone (Camele et al., 1980; Waterman and Mahmoud, 1985; Mayer, 1993). The presence of a low field hydrogen bonded hydroxyl proton at δ 16.5 and one olefinic proton at δ 7.3 in the ¹H NMR spectrum of **1c**, characteristic of β -hydroxychalcones with Z-configuration (Gandhidasan et al., 1987; Kiuchi et al., 1990; Parmar et al., 1989). suggested that compound 1c exist either tautomeric structures 1a or **1b.** The absence of signals between δ 4.4–4.8 in the ¹H NMR spectrum, excluded the presence of

Table I. ¹H and ¹³C NMR spectral data for **1c**, **2**, **3** and dibenzoylmethane (CDCl₃, TMS as int. standard)^a.

Position	Compound 1c		Compound 2 ^b	Compound 3 ^c	Dibenzoyl methane ^b
	δ_{H}	δ_{C}	$\delta_{ m C}$	$\delta_{ m C}$	δ_{C}
1		136.7 s	135.7 s	135.7 s	136.1 s
1 2 3 4 5	8.22 dd (7.2, 2.2)	128.4 d	127.1 d	127.0 d	128.0 d
3	7.52 brd (7.2)	130.3 d	128.6 d	128.6 d	129.5 d
4	7.64 brt (7.2)	133.2 d	132.1 d	132.1 d	133.4 d
5	7.52 brd (7.2)	130.3 d	128.6 d	128.6 d	129.5 d
	8.22 dd (7.2, 2.2)	128.4 d	127.1 d	127.0 d	128.0 d
7	` ' '	185.6 s	184.3 s	184.4 s ^d	186.5 s
6 7 8 9	7.30 s	92.5 d	97.9 d	96.7 d	93.7 d
		186.6 s	186.1 s	185.2 s ^d	186.5 s
1'		103.5 s			
2'	10.3 s	163.6 s			
3'		110.9 s			
4'		163.6 s			
5'	6.41 s	92.5 d			
6'	12.5 s	163.6 s			
7'	3.23 d (6.6)	22.3 t			
8'	5.10 t (6.6)	121.6 d			
9'	. ,	131.3 s			
10'	1.56 brs	25.6 q			
11'	1.87 brs	17.9 q			
OMe	3.97 s	55.9 q ²			

^a δ in ppm and J (in parentheses) in Hz.

the diketo-tautomer **1d** also (Demizu *et al.*, 1992). Finally, the ¹³C NMR spectrum of **1c** (Table I) showed resonances at δ 186.6, 92.5 and 185.6, which were assigned to C-9, C-8 and C-7, respectively, and agree closely with those reported for the enolic structure of pongamol (**2**) (Kiuchi *et al.*, 1990) and the enolic tautomer of dibenzoylmethane (Kiuchi *et al.*, 1990), whose structures were determined by X-ray diffraction (Hollander, 1973; Parmar *et al.*, 1989). All the above ¹³C NMR data strongly supported the symmetrical structure **1c** rather than tautomeric structures **1a** or **1b**.

Experimental

General

Melting points uncorrected. ¹H NMR: TMS as int. standard. CC: silica gel (Merck, 230–400 mesh), TLC: precoated silica gel 60 F₂₅₄ (Merck, 0.10 mm). Spots were visualized by UV (254 nm)

and 10% CeSO₄-H₂SO₄ reagent followed by heating.

Plant material

Tephrosia major Micheli was collected in Jalisco, México in July 1992, at 15 km east of the Tuito. Identification of the material was carried out by O. Tellez. A voucher specimen has been deposited in the National Herbarium UNAM, (MEXU) of the Instituto de Biología.

Extraction and separation

The air-dried plant material, leaves and stems (1.24 kg) were extracted successively with petroleum ether (b.p. 35–60°), EtOAc, and MeOH. After evaporation of solvents green syrups A (7.3 g), B (32.6 g) and C (35.2 g), respectively, were obtained. In the same way, from the air-dried roots (582.0 g) green syrups D (23.6 g), E (20.3 g) and F (19.0 g) were obtained.

^b Data from Kiuchi et al., 1990.

^c Data from Magalhães et al., 1996.

d The original assignments were revised with reference to our data. Chemical shifts were determined at 300 (¹H) and 75 (¹³C) MHz. Carbon multiplicities were determined by DEPT experiments.

The petroleum ether (b.p. $35-60^{\circ}$) extract A (7.3 g) was chromatographed on a silica gel column (300 g) eluting with petroleum ether and mixtures of petroleum ether-CH₂Cl₂. From the fractions eluted with petroleum ether a mixture of β -sitosterol and stigmasterol (18.3 mg), (22 mg) and 5-O-methylobovatin (12.0 mg) (m.p. $159-161^{\circ}$) (Chen *et al.*, 1978) were obtained.

The EtOAc extract B (32.6 g) was fractionated on silica gel (250 g) using petroleum ether and mixtures of petroleum ether–CH₂Cl₂ to give a mixture of β-sitosterol and stigmasterol (25.0 mg), glabranin (25 mg) (Gómez-Garibay *et al.*, 1988) and 7-*O*-methylglabranin (95.0 mg) (Gómez-Garibay *et al.*, 1988), were obtained.

The MeOH extract C (35.2 g) was chromatographed on a column silica gel (300 g) using mixtures of petroleum ether–EtOAc, EtOAc and mixture of EtOAc–MeOH, to give a mixture of β -sitosterol and stigmasterol (39.0 mg) lupeol, (35.0 mg) glabranin (Gómez-Garibay *et al.*, 1988), (533.0 mg) 7-O-methylglabranin (123.0 mg) (Gómez-Garibay *et al.* 1982), quercetin (8.0 mg), sumatrol (13.0 mg) and α -toxicarol (8.0 mg).

The petroleum ether extract D (23.6 g) was chromatographed on a column silica gel (200 g) eluting with petroleum ether and mixtures of petroleum ether– CH_2Cl_2 to give a mixture of β -sitosterol and stigmasterol (35.0 mg), obovatin (Chen et al., 1978) 7-O-methylglabranin (75.0 mg) (Gómez-Garibay et al., 1988), sumatrol (27.0 mg) and tephrobbotin (Gómez-Garibay et al., 1986), (15.0 mg).

The EtOAc extract E (20.3 g) was fractionated on silica gel (200 g) using petroleum ether and mixtures of petroleum ether–EtOAc, a mixture of

β-sitosterol and stigmasterol (29.0 mg), glabranin (15.0 mg) (Gómez-Garibay et al., 1988) and 7-O-methylglabranin (75.0 mg) (Gómez-Garibay et al., 1988), tephrowatsin A (7.8 mg) (Gómez-Garibay et al., 1985), tephrowatsin B (13.5 mg) (Gómez-Garibay et al., 1985), quercetol B (18.3 mg) (Gómez-Garibay et al., 1988), were obtained.

Finally, the MeOH extract F (19.0 mg) was fractionated on a silica gel column (200 g) using petroleum ether and mixtures of petroleum ether—EtOAc, glabranin (56.0 mg) (Gómez-Garibay et al., 1988), 7-O-methylglabranin (12.5 mg) (Gómez-Garibay et al., 1988), 2',6'-dihydroxy-3'-prenyl-4'-methoxy-β-hydroxychalcone (1e) (24.0 mg), tephrobbotin (29.0 mg) (Gómez-Garibay et al., 1986), tephrowatsin A (5.8 mg) (Gómez-Garibay et al., 1985), tephrowatsin B (26.0 mg) (Gómez-Garibay et al., 1985), quercetol B (7.3 mg) (Gómez-Garibay et al., 1988), were obtained.

2',6'-Dihydroxy-3'-prenyl-4'-methoxy- β -hydroxy-chalcone (**1e**)

Yellow crystals, m.p. 121–123°, UV λ_{max} , MeOH, nm (log ϵ): 202 (4.32), 229 (4.22), 273 (3.82) and 316 (3.59). IR ν_{max} , CHCl₃ cm⁻¹: 1675, 1604. EIMS (70 eV) m/z (rel. int.) 354 [M⁺] (0.3),336 [M–H₂O]⁺ (0.8), 320 [M–H₂O]⁺ (1.2), 249 [C₁₄H₁₇O₄]⁺ (100), 105 [C₇H₅O]⁺ (83), 77 [C₆H₅]⁺ (40).

Acknowledgements

The authors wish to thank Ruben Gaviño, Rocio Patiño, Luis Velasco and Javier Perez-Flores for recording the ¹H NMR, ¹³C NMR, IR, UV, and MS spectra.

- Ayabe S., Kobayashi M., Hikichi M., Matsumoto K. and Furuya T. (1980), Flavonoids from the cultured cells of *Glycyrrhiza echinata*. Phytochemistry **19**, 2179–2183.
- Ayabe S., Iida K. and Furuya T. (1986), Stress- induced formation of echinatin and a metabolite 5'-prenyl-licodione, in cultured *Glycyrrhiza echinata* cells. Phytochemistry **23**, 2803–2806.
- Camele G., Delle Monache F., Delle Monache G. and Bettolo G. B. M. (1980), Three new flavonoids from *Tephrosia praecans*. Phytochemistry **19**, 707–709.
- Chen Y., Wang Y., Lin Y., Munakata K. and Ohta K. (1978), Obovatin, obovatin methyl ether and obovatachalcone, new piscicidal flavonoids from *Tephrosia obovata*. Agric. Biol. Chem. **42**, 2431–2432.
- Demizu S., Kajiyama K., Hiraga Y., Kinoshita K., Koyama K., Takahashi K., Tamura Y., Okada K. and Kinoshita T. (1992), Prenylated dibenzoylmethane derivatives from the root of *Glycyrrhiza inflata* (Xinjiang Licorice). Chem. Pharm. Bull. **40**, 392–395.
- Gandhidasan R., Neelakantan S., Venkateswara P. and Devaraj S. (1987), Components of the galls on the leaves of *Pongamia Glabra*: Structures of *Pongagallone-A* and *Pongagallone-B*. Phytochemistry **26**, 281–283.
- Gomez-Garibay F., Quijano L., Calderón J. S., Rodríguez C. and Rios T. (1985), Prenylflavans from *Tephrosia watsoniana*. Phytochemistry 24, 1057–1059.
- Gomez-Garibay F., Quijano L., Calderón J. S., Aguirre G., and Rios T. (1986), Abbottin and Tephrobbottin: Two new flavonoids from *Tephrosia abbottiae*. Chem. and Ind. (London) 827.
- Gomez-Garibay F., Quijano, L. Calderón J. S., Morales S. and Rios T. (1988), Prenyl flavanols from *Tephrosia quercetorum*. Phytochemistry **27**, 2971–2973.
- Gomez-Garibay F., Calderón J. S., Quijano, L., Téllez O., Socorro-Olivares, M. And Rios T. (1997), An unusual prenyl biflavonol from *Tephrosia tepicana*. Phytochemistry **46**, 1285–1287.
- Gomez-Garibay F., De la O Arcienega, M., Céspedes, C. L., Taboada J. and Calderón J. S. (2001), Chromene

- chalcones from *Tephrosia carrollii* and the revised structure of oaxacacin. Z. Naturforsch. **56c**, 969–972.
- Gupta R. K. and Krishnamurti M. (1977), New dibenzoylmethane and chalcone derivatives from *Milletia ovafolia* seeds. Phytochemistry **16**, 1104–1104.
- Hollander F. J., Templeton D. H. and Zalkin A. (1973), The crystal and molecular structure of 1,3-diphenyl-1,3-propanedione enol. Acta Cryst. **B29**, 1552–1553.
- Khan H. and Zaman A. (1974), Extractives of *Milletia* ovalifolia. Tetrahedron **30**, 2811–2815.
- Kiuchi F., Chen X. and Tsuda Y. (1990), *Z-E* isomerization of β-methoxychalcones: Preferred existence of *E*-isomers in naturally ocurring β-methoxychalcones. Chem. Pharm. Bull. **38**, 1862–1871
- Magalhaes A F., Azevedo-Tozzi A. M. G., Noronha-Sales B. H. L. and Magalhaes E. G. (1996), Twenty-three flavonoids from *Lonchocarpus subglaucescens*. Phytochemistry **42**, 145–147.
- Mayer, R. (1993), A β-hydroxychalcone from *Leptospermum scoparium*. Planta Med. **59**, 269–271.
- Parmar V. S., Rathore J. S., Jain R., Henderson D. A. and Malone J. F. (1989), Occurrence of pongamol as the enol structure in *Tephrosia purpurea*. Phytochemistry **28**, 591–593.
- Rathore A., Sharma S. C. and Tandon J. S. (1987), A new methoxylated β- hydroxychalcone from *Polygonum nepalense*. J. Nat. Prod. **50**, 357–359.
- Stevens J. F., Ivancic M., Deinzer M. L. and Wollenweber E. (1999), A novel 2 hydroxyflavanone from *Collinsonia canadensis*. J. Nat. Prod. 62, 392–394.
- Venkataratnam G. and Rao E. V. (1987), Flavonoids of *Tephosia procumbens* revised structure for *praecansone A* and conformation of *praecansone B*. J. Chem. Soc. Perkin Trans I 2773–2727.
- Waterman P. G. and Mahmoud E. N. (1985), Flavonoids from the seeds of *Lonchocarpus costaricensis*. Phytochemistry **24**, 571–574.
- Wollenweber E., Mann K., Iinuma M., Tanaka T. and Mizuno M. (1989), 5,2',5'-trihydroxyflavone and 2',β-dihydroxychalcone from *Primula pulverulenta*. Phytochemistry **28**, 295–296.